
LIQUID FLOW IN A LONG CAPILLARY 

V. I. Kolesnichenko UDC 532.68 

Addition of an additional force term to the Porkhaev equation is proposed for 
description of the process of liquid influx into a long capillary. 

Capillary influx of liquid involves physicochemical hydrodynamics processes. If we 
consider this process from a hydrodynamic viewpoint (without consideration of physicochemi- 
cal features), it can be described by the well-known [i] equation of Prokhaev 

d21 1 ( dl ) 2 +  8~ dl 2~cos____O O. (1 )  
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It is assumed here that the capillary is located horizontally, i.e., influx occurs without 
action of the force of gravity gsine = 0. 

Considering the first two terms of Eq. (i) to be infinitely small, we obtain the well- 
known expression 

(~ rcosO \1/2 
= t) , (2)  

which i s  u sed  in  models  o f  p e n e t r a t i o n  o f  c a p i l l a r y - p o r o u s  b o d i e s .  However ,  t h i s  r e l a t i o n -  
s h i p  d e s c r i b e s  t h e  p r o c e s s  o f  l i q u i d  i n f l u x  t o  a long  c a p i l l a r y  i n c o r r e c t l y .  

E x p e r i m e n t a l  r e s u l t s  on d i s p l a c e m e n t  o f  a l i q u i d  m en i s cu s  in  a long  (L " 1 .3  m) h o r i -  
z o n t a l  c a p i l l a r y  t u b e  w i t h  r a d i u s  r = 4 . 5 . 1 0  -4 m were  p r e s e n t e d  in  [ 2 ] .  H o r i z o n t a l  p o s i t i o n -  
ing  o f  t h e  g l a s s  t u b e  was m o n i t o r e d ;  m o r e o v e r ,  a p o r t i o n  o f  t h e  e x p e r i m e n t s  f o r  each  l i q u i d  
were  p e r f o r m e d  a f t e r  t u r n i n g  t h e  t u b e  t h r o u g h  180 ~ which e l i m i n a t e d  t h e  e f f e c t  o f  any p o s s i -  
b l e  small inclination of the tube on the experimental results. After each experiment the 
capillary was dried with compressed air for 10-15 min. A plane vessel into which the liquid 
studied was poured was attached to one end of the capillary while the other end remained 
open. The effect of hydrostatic liquid pressure in the vessel on liquid motion in the capil- 
lary was eliminated by establishing the level of the surface of a measured quantity of liq- 
uid above the capillary input orifice. 

Time was measured beginning when the meniscus passed a mark at a distance s = 0.3 m 
from the capillary input. Thus, "developed" capillary influx was studied. A stopwatch re- 
corded the time of meniscus passage by marks made on the capillary. The experimental points 
shown in Fig. 1 do not fit the linear dependence s which follows from Eq. (2). 

This fact apparently indicates that the Porkhaev model does not consider a force term 
which becomes significant with increase in the length of the wetted segment s Therefore, 
we propose that the value of this additional force term is proportional to s In this case, 
as will be shown below, the solution of a modified equation (i) completely satisfies the ex- 
perimental results presented in Fig. i. 

The modified Porkhaev equation has the form 

d2l 1 ( dl ,t 2 8~1 dl l 

where ~2 is some empirical proportionality coefficient. 
this coefficient will have the dimensions of time squared. 

2a cos 0 
- -0 ,  (3) 
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From dimensionality considerations 
The initial conditions 
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Fig. i. Square of liquid column length z = ~2 vs. 
time t for following substances: i) distilled 
water; 2) carbon tetrachloride; 3) ethyl alcohol. 
g, m2; t, sec. 

t=O. l=O, dl ( 2ocosO \t/2 
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The initial condition for velocity was obtained from Eq. (3) by performing the limiting 

transition as ~ + 0. 

Making the replacement of variables [3] z = ~2 and introducing the notation 

(4) 

we obtain 

r2p . ~ _  ~2 . 4 a c o s O  
"Co -~- - - ~ , ~  ' 2 "' a - -  rp ' 

(5) 

Its solution is 

d~z 1 dz 1 
dt 2 @ -p----7--_ z a. 

~c o dt ~1 
( 6 )  

z - -  1 + - -  e x p  { k ~ t } - [ -  - -  e x p  {k2t} , 
klk., - k i -.- k~ k 2 -- k 1 

(7) 

where kl and k 2 are roots of the corresponding characteristic quadratic equation: 

k ~ , 2 - -  2 %  \ ~i / ] ' 
(8) 

having the properties 

I 1 
l@o = 2 ; k~ + k,, - ( 9 )  

TZ ~'o  

)2 << Skipping ahead somewhat we may note that Eq. (8) contains a small parameter (TO/T l 
i. This permits simplification of Eq. (8) 

t,~i x~ " k,, - -  T o  | 
'2 ' - 2 (i0) 

TI TI T 0 

It can easily be shown that k2, like kl, has a negative value. Moreover: 

k,_, \ T i j t T~ } 

Using the latter inequality, we estimate the coefficients of the exponentials in Eq. (7): 

k.~ k, 
- -  ~-- l ;  -----d d 1. (12) 
k l  -- k2 k2 - -  k l  
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TABLE i. Values of g, TI 2, to for Materials 
Studied 

Material a, m2/sec 2 T~, see 2 %.lo=sec 

H20 
C=H~O 
CCll 

0,299 
0,255 
0,212 

6,83 
6,21 
6,61 

2,52 
1,66 
4,17 

Since IklI << [k2[ [Eq. (ii)] and both roots are negative, the value of the second exponen- 
tial in Eq. (7) is significantly smaller than that of the first. Considering this, together 
with Eqs. (9), (i0), (12), we finally obtain 

z = a ~ ( 1 - - e x p {  ~%~1 t}) (13) 

o r ,  t r a n s f o r m i n g  t o  t h e  o r i g i n a l  v a r i a b l e s  o f  Eq. ( 5 ) :  

l = ~ 1 - -  exp t (14)  
rp , 4 ~  z 

For s m a l l  t i m e s ,  expand ing  t h e  e x p o n e n t i a l  in  a s e r i e s ,  we o b t a i n  Eq. ( 2 ) .  Thus,  in  
the initial stage of influx the additional force term introduced does not manifest itself. 
On the other hand, it plays a significant role at large times. While Eq. (2) indicates 
that liquid in a long horizontal capillary can move practically indefinitely, it follows 
from Eq. (14) that there exists a finite limit to such flow: 

l*~--l't~==T ( 2~c~ ) I / 2 " r p  (15)  

Thus,  t* i s  a c h a r a c t e r i s t i c  l i n e a r  d i m e n s i o n .  Using Eq. ( 5 ) ,  we may i n t r o d u c e  v e l o c -  
i t y  v = (a/2) 1/2. Then from Eq. (15)  we o b t a i n  

l* ( )I /~ =L = l* rp - (16)  
v 2~ cos @ 

i . e . ,  t h e  e m p i r i c a l  c o e f f i c i e n t  r i n t r o d u c e d  h e r e  i s  some c h a r a c t e r i s t i c  t i m e ,  ove r  which 
the liquid traverses a limiting distance s moving with a velocity v. 

Making use of Eq. (16), we rewrite Eq. (3) in the form 

d2ldt z 1 ! dl , 2 8 0 dI 2~cosO [ ( l ) 2 ] 
@ T ~ )  + ---- i-- (17) �9 r2p dt rpl "-i 7- " 

The r i g h t - h a n d  te rm o f  t h i s  e x p r e s s i o n  i n d i c a t e s  how t h e  d e c r e a s e  in  d r i v i n g  f o r c e  f o r  t h e  
c a p i l l a r y  i n f l u x  o c c u r s  as t h e  l e n g t h  o f  t h e  w e t t e d  segment  s i n c r e a s e s .  Such a change  can 
be e x p l a i n e d ,  f o r  example ,  by t h e  p r e s e n c e  o f  a dependence  of  dynamic w e t t i n g  a n g l e  on s 

Finally, we will consider an approximation usually made in such problems. In Eq. (6) 
we drop the term d2z/dt =, i.e., we will neglect the inertial force. Solution of the equa- 
tion obtained with the initial condition t = 0, z = 0 coincides precisely with Eq. (13), 
the solution of the complete differential equation (6) after simplifications. 

Table 1 presents values obtained by processing experimental results, while Fig. 1 
shows curves calculated with Eq. (13) and compares them with experimental points, averaged 
over 8-10 experimental values. The good agreement of the experimental and theoretical 
results is evident. It follows from the data of Table 1 that the inequality assumed above, 
(T0/~l) 2 << i, is valid for all the material tested. 

Thus, introduction of an additional force term into the Porkhaev equation is quite ef- 
fective for description of liquid flow in a long capillary. 
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NOTATION 

~, length of liquid column in capillary at time t; r, capillary radius; L, capillary 
length; n, liquid dynamic viscosity coefficient; o, liquid surface tension coefficient; p, 
liquid density; e, static wetting angle; g, acceleration of gravity; ~, angle of inclina- 
tion of the capillary to the horizontal; ~, empirical proportionality coefficient; z, v, 
t0, Tz, a , ~*, new variables; kz, k2, roots of characteristic quadratic equation. 

l .  
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INFLUENCE OF A POSITIVE PRESSURE GRADIENT ON THE CHARACTERISTICS 

OF A TURBULENT BOUNDARY LAYER 

V. V. Zyabrikov UDC 532.526 

Based on a systematic analysis of present day experimental data published in 
the literature, a modified Prandtl-Clauserturbulence model is presented 
which makes it possible to take into account the effect of a positive pres- 
sure gradient on the average characteristics of a turbulent boundary layer. 

Determination of the characteristics of a turbulent boundary layer subject to the ac- 
tion of a positive pressure gradient constitutes a difficult problem from the experimental 
point of view. Proceedings of the Stanford Conference of 1980/81 (see [i]) show that there 
is as yet no full set of published experimental data that exhausts this problem (especially as 
far as the region before separation is concerned). According to the valid opinion of the 
authors of [2, 3], the difficulty in making an experimental study of the region close to 
the point where the turbulent boundary layer separates is associated with the emergence of 
short-duration reverse flows at a significant distance from the "stationary" separation 
point and with the need for using measuring instruments sensitive to the direction of the 
rate of flow. Although the first paper on this theme appeared in 1968 (see [2]), it is only 
recently that sufficiently detailed results of systematic measurements have been published 
[4-6] that justify modification of the Prandtl-Clauser model of turbulence. The present re- 
search was conducted under the guidance of L. G. Loitsyanskii. 

Distribution of Longitudinal Velocity and Frictional Stress in the Interior Region of 
Turbulent Boundary Layer. By the interior region of a turbulent boundary layer we mean 

that portion of it in which the turbulent viscosity increases with increasing distance from 
the wall. In contrast to the exterior region the interior region depends weakly on the pre- 
history of the flow and possesses a relative autonomy: The characteristics of this region 
can be regarded as functions only of the parameters of pressure gradient p, = (~/p)(dp/dx)/ 
v, ~ and convective acceleration g, = v(dv,/dx)v, 2 [7]. The interior region of the turbulent 
boundary layer with a positive pressure gradient consists of a viscous sublayer, a transi- 
tional portion, a logarithmic region, and a half-power law subregion [8]. The problem of 
determining the damping factor in the transition section was examined in detail in [7-9]. 
For a positive pressure gradient of arbitrary magnitude the damping factor can be approxi- 
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